Breaking The Three Laws

 

Fight Club: Automated vs. Hand Crafted Pin Multiplexing

HAPS HT3 connectors and cables

This week a prototyping engineer challenged me that “his” customized and hand crafted pin multiplexing capability was “better” than the HAPS High Speed Time-Domain Multiplexing, HSTDM. My response, “Faster, maybe, better NO”. This blog explains why the HAPS HSTDM capability will beat out a custom coded multiplexing capability hands down every time.

First let’s list of the positives and negatives of a custom coded pin multiplexing capability

Positives

  • It’s tailored to the exact design requirements
  • It’s tuned for a specific set of FPGA pins and inter-FPGA connections to push performance to the limits

Negatives

  • It’s hand crafted meaning effort to develop
  • It has to be manually inserted into the design
  • It breaks if the design requirements change
  • It’s tuned so will need to be customized to different FPGA pins and inter-FPGA connections
  • Might be unreliable leading to mystery ghost bugs to chase down

I am sure the list of negatives is longer but I would bet that you already get the idea. While it’s possible to craft a pin-multiplexing block that eeks out every possible drip of performance the overhead of insertion, modification to different design and hardware requirements and testing makes it inferior to the HAPS HSTDM capability.

HAPS HSTDM

HAPS HSTDM was designed to deliver an automated, cycle accurate, highest performance, reliable, modular and scalable pin multiplexing solution for the HAPS systems. Automated insertion through ProtoCompiler ensures that the usage is as unobtrusive as possible. HAPS HSTDM is tested to run on every qualified IO pin across the HAPS-70 system. It will reliably run on any HAPS platform, we can claim this as the HAPS hardware itself is performance tested as part of the production manufacturing tests ensuring that all systems and interconnects meet the minimum required performance for HSTDM operation. It supports multiple ratios meeting the need of many different design requirements. It is very high performance using the latest differential signaling and training techniques with built in error detection. Just looking at this list it’s clear that HAPS HSTDM has many advantages over custom.

But wait, there is more…. I would challenge that using the flexible capabilities of the HAPS hardware interconnect combined with the HAPS HSTDM capabilities that the overall HAPS prototype will run at a higher system performance. I’ve talked about this capabilities a couple of times. The HAPS systems do not have any dedicated PCB traces between FPGA’s. All interconnect is done via intelligent cabling. This method enables the HAPS hardware to be customized to better match the DUT’s interconnect needs. This means you can create more interconnect density where the DUT needs it. More dense interconnect can help reduce the overall pin multiplexing ratio required resulting in higher performance system operation. Remember your prototype is only as fast as the slowest link.

HAPS Flexible Interconnect for increased performance with HSTDM

This HAPS flexible interconnect combined with the HAPS HSTDM automated and deployed by ProtoCompiler is a very powerful solution and this is why I claim that it’s “better” than a hand crafted scheme.

More HAPS and HSTDM results

Do you agree?

  • Print
  • Digg
  • StumbleUpon
  • del.icio.us
  • Facebook
  • Twitter
  • Google Bookmarks
  • LinkedIn