HOME    COMMUNITY    BLOGS & FORUMS    Breaking The Three Laws
Breaking The Three Laws
  • About

    Breaking the Three Laws is dedicated to discussing technically challenging ASIC prototyping problems and sharing solutions.
  • About the Author

    Michael (Mick) Posner joined Synopsys in 1994 and is currently Director of Product Marketing for Synopsys' FPGA-Based Prototyping Solutions. Previously, he has held various product marketing, application consultant and technical marketing manager positions at Synopsys. He holds a Bachelor Degree in Electronic and Computer Engineering from the University of Brighton, England.

Prototyping wearables and the Internet of Things (IoT)

Posted by Michael Posner on March 16th, 2014

Is this the future of wearable technology?

LOL, no…. well maybe…..

There are lots of questions on if wearables will bring the end of the Smartphone, I personally think these two technologies will co-exist. I like the idea of wearing my technology but there are many people that don’t thus there should be a place for both technologies for a while yet. Of course for anyone who travels a lot like me they will know that the airport security creates a new issue not previously encountered. I use a fitbit which is a small step tracker and I wear this on my trouser (pant) pocket. It pretty much lives in this spot and I’ve almost put it through the washing machine when I’ve forgotten to take it off. The problem is that this little device has become a part of my life and when going through airport security I’ve also forgotten to take it off which leads to an extra search pat down. A simple solution to this would be for me to remember to take it off but it would be nice if these devices are security certified of something like that.

When it comes to prototyping these deeply embedded SoC designs you will find out that while the form factor is small and simple the SoC designs are not. These designs are multi-million ASIC gates so when they are prototyped using FPGA’s the challenges of handling non-FPGA code, multi-FPGA partitioning and prototype assembly must be overcome. I visited a load of customers last week while traveling internationally and the common theme at the meetings was discussion around how to enable complex FPGA-based prototyping without the need for in-depth specific expertise. The first place to start is to put a methodology in place to define a flow supporting FPGA-based prototyping making a part of the larger SoC project. The FPGA-based Prototyping Methodology Manual, FPMM, is the perfect place to start in defining what is needed as part of this flow.  

I had the pleasure of traveling with Rene Richter, one of the co-authors of the FPMM. In the picture above you can see him explaining the basis of multi-FPGA partitioning and how to utilize pin multiplexing. His expertise helped a lot of customers last week but he was the first to say that everything he explained was already documented in the FPMM.

This week’s call to action, download the FPMM if you have not already done so………… and read it.

I was thinking that it might be time to work on the 2nd revision, updating the FPMM with information on how FPGA-based prototyping has evolved over the last couple of years, what do you think? What do you think has changed in FPGA-based prototyping which should be documented?

  • Print
  • Digg
  • StumbleUpon
  • del.icio.us
  • Facebook
  • Twitter
  • Google Bookmarks
  • LinkedIn