HOME    COMMUNITY    BLOGS & FORUMS    Breaking The Three Laws
Breaking The Three Laws
  • About

    Breaking the Three Laws is dedicated to discussing technically challenging ASIC prototyping problems and sharing solutions.
  • About the Author

    Michael (Mick) Posner joined Synopsys in 1994 and is currently Director of Product Marketing for Synopsys' FPGA-Based Prototyping Solutions. Previously, he has held various product marketing, application consultant and technical marketing manager positions at Synopsys. He holds a Bachelor Degree in Electronic and Computer Engineering from the University of Brighton, England.

Ice Cream with Raspberry Pi for Remote System Connectivity

Posted by Michael Posner on February 15th, 2014

Engineering departments can no longer afford the luxury of all team members being located in the same office. The term global localization is used to describe how a team is split up over multiple geographies but must function as one unified entity. This is not only true for the personnel but also for the tools they use including FPGA-based prototyping hardware. While every software engineering in the world wishes for a high performance prototype directly on their desk typically logistically and financially this is not possible. FPGA-based prototyping systems must support this capability to ensure they can be accessed from anywhere around the world.

The HAPS series of FPGA-based prototyping systems support remote access via the HAPS Universal Multi-Resource Bus, or HAPS UMRBus for short.

The HAPS UMRBus enables the users to remotely access the HAPS system, configure it, monitor it and basically love it from a distance. The HAPS UMRBus enables much more than just remote access! The HAPS UMRBus enables data streaming to and from the system for test case stimuli or debug, advance use modes such as Hybrid Prototyping and transaction based validation and provides a generic API for user capability extensions. The HAPS UMRBus is able to deliver these additional capabilities because it’s a very high bandwidth, low latency connection from a host machine to the HAPS system.

The HAPS-70 series offers this high performance HAPS UMRBus and an integrated HAPS UMRBus over a lower performance USB 2.0 standard interface. The recommendation is that if you only needed remote connectivity for configuration and monitoring then use the HAPS UMRBus over USB 2.0 interface. If you needed high performance and low latency for Hybrid Prototyping and the other advanced capabilities then utilize the high performance HAPS UMRBus. Great right………………… Enter global localization…..

Our customers love that HAPS systems can be remotely accesses as it enables them to utilize the systems 24/7, 365 days a year (HAPS don’t even get Christmas off). However they like to lock them up along with their server hardware or in a data center. Some customers have dedicated hosts serving the HAPS which enables them to utilize the high performance, low latency HAP UMRBus and all the advanced capabilities. However, others just want to utilize the remote access via the HAPS UMRBus over USB 2.0 and while they have thousands upon thousands of Ethernet drops available they rarely have a host which they can plug the USB 2.0 cable into. So what are these users to do?

Enter the Raspberry Pi (see the blog title was not a typo but I bet the engineers already knew that)

To enable our customers to plug the HAPS system directly into an Ethernet hub one of our engineers came up with the great idea to utilize the off-the-shelf Raspberry Pi.

How it works: You buy a Raspberry Pi, USB cable, power supply and SD card, this is going to set you back around $50 (yep, not a typo, $50 and that’s usually a top of the range one). You then contact Synopsys HAPS support and we will provide you with a boot image to load on the SD card. The boot image is a standard Raspberry Pi OS with the HAPS remote access utilities, called HAPS Confpro, pre-installed. Next connect the USB cable between the Raspberry Pi and the HAPS-70 (or HAPS-DX) system. Finally connect the Raspberry Pi’s Ethernet connection into the Ethernet hub/switch and power it up. We recommend assigning a defined IP address to the Raspberry Pi so the HAPS system it’s connected to can be easily recognized. That’s it, you are ready to access the HAPS system remotely. I personally love this solution as it not only solves the problem but also lends itself for further capability expansion in the future. More on the expansion capabilities in a future blog….

What do you use the Raspberry Pi for?

  • Print
  • Digg
  • StumbleUpon
  • del.icio.us
  • Facebook
  • Twitter
  • Google Bookmarks
  • LinkedIn